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Abstract. One of the main tools in radar target recognition
is high resolution range profile (HRRP). However, it is very
sensitive to the aspect angle. One solution to this problem is
to assume the consecutive samples of HRRP identically in-
dependently distributed (IID) in small frames of aspect an-
gles, an assumption which is not true in reality. However,
based on this assumption, some models have been developed
to characterize the sequential information contained in the
multi-aspect radar echoes. Therefore, they only consider the
short dependency between consecutive samples. Here, we
propose an alternative model, the segment model, to address
the shortcomings of these assumptions. In addition, using
a Markov chain Monte-Carlo (MCMC) based Gibbs sam-
pler as an iterative approach to estimate the parameters of
the segment model, we will show that the proposed method
is able to estimate the parameters with quite satisfying accu-
racy and computational load.

Keywords
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1. Introduction
Radar target recognition was thoroughly influenced by

the development of high resolution radars, which made it
possible to extract much more information from the targets.
One such feature vector, which is one of the most powerful
tools for radar target recognition, is the high resolution range
profile [1, 2, 3, 4, 5]. However, it is a strong function of the
target-radar aspect angle [6, 7].

In order to solve this problem and benefit the informa-
tion of consecutive range profiles in the recognition process,
a mathematical model should be developed for the statistical
relation of the consecutive range profiles. In [8, 9], some so-
lutions are proposed using the Gaussian distribution and its
variants. There (i.e., [8, 9]), the consecutive range profiles
are assumed to be identically independently distributed in an
aspect frame.

In [10, 11, 12], according to the physical behavior of
linear and rotational movement of the target and taking into

account the electromagnetic backscattering considerations,
Dynamic system (DS) is proposed to model the short depen-
dency between consecutive samples of HRRP in a segment
of the HRRP sequence.

Also, it should be noted that in all of the aforemen-
tioned works (i.e., [8, 9, 10, 11, 12]), the signal’s amplitudes
are considered as the features extracted from HRRP. How-
ever, in this paper, the locations of dominant peaks are con-
sidered as the observed data, which are less sensitive to target
fluctuations and the receiver noise [13]. The feature extrac-
tion process will be the same as the work proposed in [14].

On the other hand, the hidden Markov model (HMM)
is the most important tool in modeling non-stationary sig-
nals such as radar returns, speech, handwriting, etc., and is
widely used in the task of recognition of patterns made from
this type of signals [1, 15]. This model is used as a basis
in many signal processing applications [3, 16, 17]. For ex-
ample, in the field of speech recognition, the model can be
used to realize the phonemes (or other parts of speech sig-
nal) in conjunction to each other [17]. In this model, the
observations are emitted through a state sequence in which
transition to each state depends only on the previous one. In
the previous HMM-based works in radar target recognition
(e.g. [18, 15, 8]), each state can emit only one observation.
However, by relaxing the number of emitted observations in
each state, we achieve a more general model called the “seg-
ment model” [2], so that the dependency of an observation
sample is not restricted to its previous sample.

Estimating the parameters of this model from the ob-
servations is the most important task in the training phase of
the proposed target recognition procedure. To this end, here,
we suggest a new approach based on Markov chain Monte-
Carlo technique, [19]. We use the Gibbs sampling technique
to generate the samples for the estimation phase of the algo-
rithm. This technique is quite efficient in reducing the sam-
pling from high-dimensional distributions to sampling from
a series of low dimensional distributions [20]. Moreover, it
has many advantages, such as solving the problem of conver-
gence to local maxima and quite admissible computational
burden [21].

The remainder of this paper is organized as follows.
We will introduce the linear segment model and its related
assumptions in Sec. 2. In Sec. 3 we will propose the Gibbs
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sampling procedure to estimate the parameters of the linear
segment model, and the experimental results are shown in
Sec. 4. Finally, Section 5 concludes the paper.

2. Problem Formulation
2.1 Feature Extraction

A common transmit signal in a high resolution radar
is the wideband linear frequency modulated (LFM) chirp
pulse. The echo of such signal from an extended target can
be written as

xn =
K

∑
k=1

αk exp( j2π fkn)+ en, n = 0,1, · · · ,N−1 (1)

where αk and fk denote the complex amplitude and fre-
quency of the k’th dominant backscatterer, respectively, and
K is the number of backscatterers. The time index is denoted
by n, and N is the number of the range profile samples. In
addition, en is the receiver additive noise.

Letting µ be the LFM rate, we have

fk =
µ(Rk−R0)

c
(2)

where Rk is the k’th scatterer’s range and R0 is the reference
range of the target.

In this paper, we choose fks as the feature vector for
the target recognition. In order to extract the feature vector,
we use the RELAX algorithm [14]. Also, note that Y is the
matrix of observed features.

2.2 Segment Model
As mentioned in the introduction, the main difference

between the previously used HMMs and segment model is
the relaxation of the number of observation emitted in each
state in the segment model. A complete tutorial on the seg-
ment model can be found in [2]. Next, we introduce the
parameters of the model.

If we denote the set of possible states by {Si}N
i=1 and

the state of the m’th segment by hm, then with Markov chain
assumption (i.e. the dynamics of the system is described by
a Markov chain), we have

P(hm = Si | hm−1,hm−2, . . . ,h1) = P(hm = Si | hm−1) (3)

for m = 1, . . . ,M.

The vector of prior probabilities is denoted by π =
[π1,π2, . . .πN ], so we have

πi = P(h1 = Si) . (4)

We denote the vector of transition probabilities from
state Si by wi , i.e.,

wi = [wi1, . . . ,wi(i−1),wi(i+1), . . . ,wiN ] (5)

where
wi j = P

(
hm = S j

∣∣ hm−1 = Si
)
. (6)

The emission behavior can be described by a joint prob-
ability density for each state,

P(Ym | hm = Si) = P(lm | hm = Si)P(Ym | lm,hm = Si) (7)

where Ym is the vector of observations emitted in the m’th
segment and lm denotes the length of Ym. As mentioned
before, this is the key point in the segment model, since in
the previously used HMM model, each state can only emit
one output. But, in the segment model, each state can pro-
duce a stream of observations with length lm, which, as will
be explained later, can be considered as a random variable
with Poisson distribution. That is why, in spite of the HMM
model, there is no need to include wii in (5).

If we denote the vector of all observations by O =
[o1,o2, . . . ,oT ], and the boundaries in the m’th segment by
sm and em (note that em− sm +1 = lm), then we have

Ym = [osm ,osm+1, . . . ,oem ] . (8)

Note that each observation (oi) contains the dominant
peak locations of the i’th radar return in an ascending order.
We denote its dimension by K.

Here, for the segment length (lm), we consider the Pois-
son distribution with parameter εi. In addition, for the obser-
vations (Ym), we assume a Gaussian process with standard
deviation σ and variable mean with linear trajectory. In other
words, the observations of each state (Si) are produced along
a straight line having Gaussian noise. In addition, the start-
ing and end points’ coordiantes of the linear trajectory are
demonstrated with bs and be, respectively.

P(lm = l | hm = Si) =
εi

l

l!
e−εi (9)

(Ym|lm = l,hm = Si)∼N
(
(be−bs)Zl +bs,σ

2Il
)

(10)

where Zl is a time index vector with length l, that maps seg-
ments of different durations within the range of zero to one.
The reason of using the Poisson distribution, is the approx-
imately constant rate of staying in an aspect frame by the
target. In addition, this is a commonly used distribution in
similar works of the segment model (e.g. [2, 20]).

We can summarize the model parameters as one param-
eter set λ:

λ =
(

π,{wi}N
i=1,{εi}N

i=1,{bs,be}N
i=1,σ

)
= (π,W,ε,B,σ) .

(11)

Our goal is to estimate (B,σ)1. However, other param-
eters will also, be used in our proposed procedure, as will be
shown.

1It is worth noting that
(
{bs,be}N

i=1,σ
)

are the non-transient parameters of λ.
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3. The Gibbs Sampling Procedure
1. Initialization phase: Beginning from the initial distri-

bution and sampling X (0).

2. Sampling phase: Sampling x j
(i) from its conditional

distribution for each j ∈ {1,2, . . . ,K},

P
(

x j
(i)
∣∣∣ x1

(i),x2
(i), . . . ,x j−1

(i),x j+1
(i−1), . . . ,xK

(i−1)
)

(12)

3. Estimation phase: Estimating the desired parame-
ters from the sampling sequence (X (1),X (2), . . . ,X (K))
based on averaging, MAP2 criteria or other estimation
assumptions.

Next, we demonstrate the Gibbs sampler steps for the
parameters of the linear segment model.

3.1 Initialization Phase
To initiate the Gibbs sampler, we need to specify the

prior distributions. We define the priors as follows.

First of all, the prior vector of the initial state probabili-
ties is sampled from (N−1)-dimensional Dirichlet distribu-
tion with equal coefficients.

π∼ Di(1,1, . . . ,1). (13)

The parameters of the Poisson distribution related to
the number of observations emitted in each state, lm, can be
sampled from the Gamma distribution [20],

εi ∼ Γ(u,v) =
vu

Γ(u)
εi

u−1e−vεi . (14)

The vector wi can be sampled initially from (N− 1)-
dimensional Dirichlet distribution with equal coefficients

wi ∼ Di(1,1, . . . ,1). (15)

Finally, the parameters related to the emission can be
sampled from the uniform and Rayleigh distributions,

bs,be ∼ uni f (0,1) , (16)

σ∼ rayl(1). (17)

3.2 Sampling Phase
The sampling procedure for each of the model param-

eters is as follows. Here, the index (k) denotes the estimated
parameter at iteration k.

Step 1: Sampling the state prior probabilities (πi),

π
(k) ∼ f (π|ε(k−1),W(k−1),B(k−1),q(k−1),σ(k−1),O)

= f
(

π

∣∣∣ q1
(k−1)

)
= Di(α1,α2, . . . ,αN) (18)

where αi is defined as

αi =

{
2 , q1

(k−1) = i
1 , q1

(k−1) 6= i
(19)

and q(k−1) is the sequence of the states at the (k−1)’th iter-
ation, and qt

(k−1) is the state of the t’th time sample (Note
that q(k−1) = [q1

(k−1),q2
(k−1), . . . ,qM

(k−1)] ).

Step 2: Sampling the Poisson parameters (εi),

εi
(k) ∼ f (εi|π(k),W(k−1),B(k−1),q(k−1),σ(k−1),O)

= f
(

εi

∣∣∣ q(k−1)
)

= Γ

(
2+di

(k−1),1+mi
(k−1)

)
(20)

where di
(k−1)denotes the total number of observations in

state Si (or equivalently sum of the segments’ lengths in state
Si), and mi

(k−1) is the number of segments in state Si at iter-
ation k−1.

Step 3: Sampling the transition probabilities,

wi
(k) ∼ f (wi|π(k),ε

(k)
,B(k−1),q(k−1),σ(k−1),O)

= f
(

wi

∣∣∣ q(k−1)
)

= Di(1+n1,1+n2, . . . ,1+nN−1) (21)

where n j is the number of transitions from state Si to state
S j, at iteration k− 1. Note that ni is omitted since wii does
not exist in this model, as explained before.

Step 4: Sampling the state trajectory’s starting and end
points,

f
(

bs,be|π(k),ε(k),W(k),q(k−1),σ(k−1),y
)

= f
(

bs,be|q(k−1),σ(k−1),y
)

∝ f
(

q(k−1),y|bs,be,σ
(k−1)

)
(22)

It can be shown that the above probability density can
be sampled using a Gaussian distribution. The related equa-
tions are as below.

bs = k2/
√

A−B2/A,

be = (k1−
B×k2√
A2−B2

)/
√

A (23)

where k1, k2 can be sampled from the normal distributions,

k1 ∼N
(

D√
A
,σ2
)
,

k2 ∼N

(
C−B×D/A√

A−B2/A
,σ2

)
(24)

2Maximum a posteriori
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with parameters defined below.

A =
M

∑
m=1

lm× (2× lm−1)/(6× (lm−1)), hm = Si

B =
M

∑
m=1

lm× (lm−2)/(6× (lm−1)), hm = Si

C =
M

∑
m=1

lm

∑
k=1

osm+k−1× (lm− k)/(lm−1), hm = Si

D =
M

∑
m=1

lm

∑
k=1

osm+k−1× (k−1)/(lm−1), hm = Si. (25)

In fact, the parameters A and B normalize the summa-
tions in C and D.

Step 5: Sampling the standard deviation (σ),

σ
(k) ∼ f

(
σ

∣∣∣ π
(k),ε(k),W(k),B(k),q(k−1),O

)
= f

(
σ

∣∣∣ B(k),q(k−1),O
)
. (26)

If we denote the mean of the Gaussian distribution re-
lated to the sample at time t by µt , from (10), it can be shown
that:

1/σ
2 ∼ Γ

(
(T −1)/2,

t=T

∑
t=1

(ot −µt)
2/2

)
. (27)

Step 6: Sampling the state sequence (q),

qt
(k) ∼ f (qt |q1

(k), . . . ,qt−1
(k),qt+1

(k−1), . . . ,

qT
(k−1),π(k),ε(k),W(k),σ(k),O)

= f (qt |qt−τb
(k), . . . ,qt−1

(k),qt+1
(k−1), . . . ,

qt+τa
(k−1),π(k),ε(k),W(k),σ(k),O)

∝ f (qt−τb
(k), . . . ,qt−1

(k),qt+1
(k−1), . . . ,

qt+τa
(k−1),ot−τb , . . . ,ot+τa |π(k),ε(k),W(k),σ(k))

(28)

where τa and τb are chosen such that

q(k)t−τb
= qt−τb+1

(k) = · · ·= qt−1
(k)

q(k)t−τb−1 6= qt−1
(k)

q(k−1)
t+τa = qt+τa−1

(k−1) = · · ·= qt+1
(k−1)

q(k−1)
t+τa+1 6= qt+1

(k−1). (29)

In fact, the above equations results in choosing a state
sequence in q, which depends on the state qt , so that the
computational burden is reduced.

3.3 Estimation Phase
After the sampling phase, we use the MAP criterion to

select the best parameter set λ
(k∗) from the produced samples

(λ(k)s).

k∗ = argmax
k

{
P
(

q(k),λ(k)
∣∣∣O
)}

(30)

where k∗ stands for the index of the best set, and the proba-
bility in (30) can be simplified using the Bayes relation,

P
(

q(k),λ(k)
∣∣∣O
)

∝ P
(

O
∣∣∣ q(k),λ(k)

)
P
(

q(k)
∣∣∣ λ

(k)
)

P
(

λ
(k)
)
.

(31)

The first two expressions at the right hand side of the re-
lation can be computed using the model formulation through
equations (3-10) and P

(
λ
(k)
)

is the prior probability of λ
(k)

at the k’th iteration, based on the related distributions dis-
cussed in Sec. 3.2.

4. Simulations
In order to test the performance of the algorithm, we

use a sequence of observations produced by a scatterer,
which wends linear trajectories during T = 500. Its path (or
equivalently the observations) is plotted in Fig. 1.
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Fig. 1. The trajectory of the scatterer (normalized range plus
measurement noise).

A linear segment model is considered for this target
with parameters as below,

N =3,
π =[0.8,0.1,0.1] ,
ε =[20,40,55] ,

w1 =[0.2,0.8] ,w2 = [0.8,0.2] ,w3 = [0.2,0.8] ,
bs =[0,0.5,1] ,be = [0.5,1,0] ,
σ =0.02. (32)

It should be noted that, for (14), the initial parameters
of u = 2 and v = 0.2 worked well in practice.

Using the Gibbs sampler described in Sec. 3, the al-
gorithm was run for 3000 iterations. The values for the
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Fig. 2. The estimated bs = [bs1 bs2 bs3 ] (blue), and the real value
(red).
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Fig. 3. The estimated be = [be1 be2 be3 ] (blue), and the real value
(red).

starting points of the states, bs, during the 3000 iterations,
are shown in Fig. 2. In addition, the values for the end points,
be, are depicted in Fig. 3. As can be seen, the algorithm’s
convergence is quite fast and after 200 iterations, the results
are satisfactory.

Furthermore, the estimated value for σ is plotted in
Fig. 4. Similarly, after 200 iterations, the algorithm has con-
verged to its real value, i.e., 0.02.

Moreover, the logarithm of MAP probability function
of (30) is shown in Fig. 5.

For a more practical radar simulation, next, we consider
a target with two dominant scatterers in each state. In addi-
tion, for simplicity in comparing, we assume three number
of aspect angle frames (i.e. three states of the model).
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Fig. 4. The estimated σ (blue), and the real value (red).
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Fig. 5. The logarithm of MAP probability vs the iteration num-
ber.

Subsequently, the performance of the estimation (used
as the learning phase of target recognition) is tested for two
extreme cases:

1. A rotating target with non-uniform angular velocity,

2. a non-rotating target with radial velocity relative to the
radar.

The observations from the two scatterers of the target
are plotted in Figs. 6, 7, for the two aforementioned cases
respectively.

As can be seen in the scatterers’ movement in Fig. 6,
the state transition occurs faster in the first case (i.e. the ro-
tating target).



RADIOENGINEERING, VOL. 24, NO. 1, APRIL 2015 285

0 100 200 300 400 500
−0.5

0

0.5

1

1.5

Sample Number

F
irs

t D
om

in
an

t S
ca

tte
re

r

0 100 200 300 400 500
0

0.5

1

1.5

S
ec

on
d 

D
om

in
an

t S
ca

tte
re

r

Sample Number

Fig. 6. The trajectories of the scatterers for the rotating target
(normalized range plus measurement noise).
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Fig. 7. The trajectories of the scatterers for the non-rotating tar-
get (normalized range plus measurement noise).

The corresponding state numbers, for the two cases (i.e.
rotating and non-rotating target), and their estimated values
by the proposed algorithm are depicted in Fig. 8 and Fig. 9,
respectively.

As can be seen, in both cases, the emission boundaries
are estimated with more than 99 percent accuracy.

Finally, the logarithm of MAP probability functions for
the aforementioned two cases are shown in Figs. 10, 11.
Similar to the previous results, the accuracy and fast con-
vergence of the algorithm can be seen in these figures too.

5. Conclusion
In this paper, inspiring from the speech recognition

techniques, we framed the segment model for the problem
of radar target recognition. Indeed, the speech signal and
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Fig. 8. The state number for the rotating target.

0 100 200 300 400 500
1

1.5

2

2.5

3
S

im
ul

at
ed

 S
ta

te
 N

um
be

r

Sample Number

0 100 200 300 400 500
1

1.5

2

2.5

3

E
st

im
at

ed
 S

ta
te

 N
um

be
r

Sample Number

Fig. 9. The state number for the non-rotating target.
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Fig. 10. The logarithm of MAP probability vs the iteration num-
ber for the rotating target.
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Fig. 11. The logarithm of MAP probability vs the iteration num-
ber for the non-rotating target.

radar echo signal have much similar characteristics. For ex-
ample, they are both AR3 processes in short term. Besides,
the HMM model performs quite well for both target and
speech recognition. Considering these similarities, A new
segment model was developed for the HRRP-based radar
target recognition. In addition, a new approach, based on
Gibbs sampler, was presented to estimate the parameters of
this model.

For each segment, and correspondingly for each
Markov state, we assumed a linear trajectory. In other words,
the scatterer’s track was split into linear trajectories, such
that each segment could be characterized with a state. Fi-
nally, estimating the state parameters of each segment was
done through Gibbs sampling approach.

In this way, we could overcome the major problem of
HRRP-based target recognition techniques, i.e., being sensi-
tive to the aspect angle. Simulations verified the theoretical
results we developed.

For future works, our goal is to promote the linear
model to the polynomial model, i.e., modeling each segment
with a polynomial trajectory.
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